miércoles, 21 de mayo de 2014

Un cúmulo de estrellas en Carina revela claves de la evolución estelar

Un cúmulo de estrellas en Carina revela claves de la evolución estelar
En esta colorida nueva imagen obtenida por el telescopio MPG/ESO de 2,2 metros en el Observatorio La Silla de ESO, en Chile, vemos el cúmulo estelar NGC 3590. Estas estrellas brillan frente a un impresionante paisaje de manchas oscuras de polvo y coloridas nubes de gas brillante. Este pequeño encuentro estelar revela a los astrónomos algunas claves sobre cómo se forman y evolucionan estas estrellas, al tiempo que nos da pistas acerca de la estructura de los brazos espirales de nuestra galaxia.

NGC 3590 es un pequeño cúmulo abierto de estrellas que se encuentra a unos 7.500 años luz de la Tierra, en la constelación de Carina (la Quilla). Está formado por docenas de estrellas vagamente ligadas por la gravedad y tiene unos 35 millones de años.

No se trata sólo de un cúmulo bonito: es muy útil para los astrónomos. Mediante el estudio de este cúmulo tan particular - y otros cercanos- los astrónomos pueden explorar las propiedades del disco espiral de nuestra galaxia, la Vía Láctea. NGC 3590 se encuentra en el segmento individual más grande del brazo espiral que puede verse desde nuestra posición en la galaxia: la distintiva espiral de Carina.

La Vía Láctea tiene múltiples brazos espirales, largas y curvadas corrientes de gas y estrellas que se extiende desde el centro galáctico. Estos brazos — dos principales, con un mayor número de estrellas, y dos menores, menos poblados — se nombran según las constelaciones en las que son más prominentes. La espiral de Carina se ve desde la Tierra como un pedazo de cielo densamente poblado de estrellas, en el brazo menor de Carina-Sagitario.

El nombre de este brazo — Carina o la Quilla — es absolutamente apropiado. Estos brazos espirales son, en realidad, ondas de gas y estrellas amontonadas que barren el disco galáctico, desencadenando brillantes estallidos de formación estelar y dejando en su estela cúmulos como NGC 3590. Encontrando y observando estrellas jóvenes como las de NGC 3590, es posible determinar las distancias a las diferentes partes de este brazo espiral, aprendiendo más sobre su estructura.

Un cúmulo abierto típico pueden contener desde unas pocas decenas a unos pocos miles de estrellas, proporcionando a los astrónomos pistas sobre la evolución estelar. Las estrellas en un cúmulo como NGC 3590 nacen de la misma nube de gas y más o menos al mismo tiempo, haciendo de estos cúmulos los lugares perfectos para poner a prueba las teorías sobre cómo se forman y evolucionan las estrellas.

En esta imagen obtenida por el instrumento Wide Field Imager (WFI), instalado en el telescopio MPG/ESO de 2,2 metros en La Silla, vemos el cúmulo y las nubes de gas que lo rodean, que brillan en tonalidades anaranjadas y rojas debido a la radiación procedente de las estrellas calientes más cercanas. El gran campo de visión de WFI también ha captado un enorme número de estrellas de fondo.

Para obtener esta imagen, se realizaron múltiples observaciones utilizando diferentes filtros para captar los variados colores de la escena. Esta imagen fue creada mediante la combinación de imágenes tomadas en las partes visible e infrarroja del espectro y utilizando un filtro especial que recogió sólo la luz que proviene del hidrógeno brillante.

Loading player...


ESO

miércoles, 14 de mayo de 2014

El misterio de la formación de un magnetar, ¿resuelto?

El misterio de la formación de un magnetar, ¿resuelto?
Los magnetares son los extraños remanentes superdensos de explosiones de supernovas. Son los imanes más potentes conocidos en el universo — millones de veces más potentes que los imanes más fuertes de la Tierra. Utilizando el telescopio VLT (Very Large Telescope) de ESO, un equipo de astrónomos europeos cree haber hallado, por primera vez, a la estrella compañera de un magnetar. Este descubrimiento ayuda a explicar cómo se forman los magnetares — un enigma de hace 35 años — y por qué esta estrella particular no colapsó en agujero negro tal y como esperarían los astrónomos.

Cuando una estrella masiva colapsa por su propia gravedad durante una explosión de supernova, puede formar, o bien una estrella de neutrones o un agujero negro. Los magnetares son una forma inusual y muy exótica de estrella de neutrones. Como todos estos objetos extraños, son pequeños y extraordinariamente densos — una cucharadita de materia de estrella de neutrones tendría una masa de aproximadamente mil millones de toneladas — pero también tienen campos magnéticos extremadamente potentes. Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar (starquake), consecuencia de las enormes tensiones que tienen lugar en sus cortezas.

El cúmulo estelar Westerlund 1, situado a 16.000 años luz de la Tierra, en la constelación austral de Ara (el Altar), alberga uno de las dos docenas de magnetares conocidos en la Vía Láctea. Se llama CXOU J164710.2-455216 y ha intrigado enormemente a los astrónomos.

"En nuestro anterior trabajo demostramos que el magnetar del cúmulo Westerlund 1 debe haber nacido de la explosiva muerte de una estrella con unas 40 veces la masa del Sol. Pero este hecho representa un problema en sí mismo, ya que se supone que, tras morir, las estrellas tan masivas colapsan para formar agujeros negros, no estrellas de neutrones. No entendíamos cómo podía haberse transformado en magnetar", afirma Simon Clark, autor principal del artículo que plasma estos resultados.

Los astrónomos propusieron una solución a este misterio. Sugirieron que el magnetar se formó por las interacciones de dos estrellas muy masivas en órbita una en torno a la otra, en un sistema binario tan compacto que encajaría dentro de la órbita de la Tierra alrededor del Sol. Pero, hasta ahora, no se había detectado ninguna estrella acompañante en la ubicación del magnetar en Westerlund 1, así que los astrónomos utilizaron el VLT para buscarlo en otras partes del cúmulo. Buscaron estrellas fugitivas — objetos que escapan del cúmulo a grandes velocidades — que podría haber sido expulsadas de la órbita por la explosión de supernova que formó al magnetar. Se descubrió que una estrella, conocida como Westerlund 1-5, parecía encajar perfectamente con lo que buscaban.

"No es sólo que esta estrella tenga la alta velocidad esperada si está siendo impulsada por una explosión de supernova, sino que además parece imposible replicar, en una estrella individual, las condiciones de baja masa, alta luminosidad y abundancia de carbono en la composición — un pista que indica que debe haberse formado, originalmente, con una compañera binaria", añade Ben Ritchie (Open University), coautor del nuevo artículo.

Este descubrimiento permitió a los astrónomos reconstruir la historia de la vida de la estrella que permitió la formación del magnetar en lugar del esperado agujero negro. En la primera etapa de este proceso, la estrella más masiva de la pareja comienza a quedarse sin combustible, transfiriendo sus capas externas a su compañera menos masiva — que está destinada a convertirse en magnetar — haciendo que gire cada vez más rápido. Esta rápida rotación parece ser el ingrediente esencial en la formación del campo magnético ultra-fuerte del magnetar.

En la segunda etapa, como resultado de esta transferencia de masa, la propia compañera llega a ser tan masiva que, a su vez, desprende una gran cantidad de la masa recientemente adquirida. Gran parte de esta masa se pierde, pero una parte pasa de nuevo a la estrella original, la que todavía hoy vemos brillando y conocemos como Westerlund 1-5.

"Este proceso de intercambio de material ha sido el que ha proporcionado a Westerlund 1-5 su firma química única, y el que ha permitido que la masa de su compañera encoja a niveles lo suficientemente bajos como para que nazca un magnetar en lugar de un agujero negro — ¡una forma de pasarse la “patata caliente” con consecuencias cósmicas!", concluye Francisco Najarro (Centro de Astrobiología, España), miembro del equipo de investigación.

Por tanto, en la receta para formar un magnetar, parece que un ingrediente fundamental es ser una de las componentes de una estrella doble. La rápida rotación generada por la transferencia de masas entre las dos estrellas parece necesaria para generar el campo magnético ultra fuerte y, posteriormente, una segunda fase de transferencia de masa permite al futuro magnetar adelgazar lo suficiente como para no colapsar en agujero negro en el momento de su muerte.

Loading player...


ESO

martes, 13 de mayo de 2014

El Ceratosaurus más completo de la península ibérica

El Ceratosaurus más completo de la península ibérica
Un equipo de investigadores hispano-luso del que forma parte la Universidad Nacional de Educación a Distancia ha identificado nuevos restos óseos de un ejemplar de dinosaurio Ceratosaurus en Portugal. Los primeros fósiles de este animal carnívoro -que pudo llegar a pesar hasta media tonelada- habían sido descritos hace catorce años. La suma de todos los huesos convierte al ejemplar en el Ceratosaurus más completo de la península ibérica y de fuera de Norteamérica. Además, su identificación da pistas sobre cómo evolucionó la especie con la apertura del Atlántico Norte.

Dos instituciones portuguesas albergaban, sin saberlo, un mismo esqueleto de dinosaurio carnívoro Ceratosaurus, el más completo de su especie de toda la península. En el año 2000 los investigadores del Museo de Lourinhã (Portugal) identificaron un conjunto de restos fósiles como parte de un ceratosaurio que habían localizado en la región de Torres Vedras (Portugal). En esa misma localidad, concretamente, en una zona litoral conocida como Playa Valmitão, un coleccionista particular recogía, ignorándolo, parte de ese mismo esqueleto.

El aficionado donó los restos al Ayuntamiento de Torres Vedras y acaban de ser identificados como parte de una pata del mismo esqueleto depositado en el museo portugués, ambos pertenecientes al carnívoro Ceratosaurus.

“El conjunto constituye el registro más completo de un ceratosaurio en la península ibérica”, asegura Francisco Ortega, uno de los autores del estudio e investigador del Grupo de Biología Evolutiva de la Universidad Nacional de Educación a Distancia (UNED). Además, la suma de todos los fósiles, que datan del Jurásico Superior –hace unos 140 millones de años–, representa el registro más completo del género fuera de América del Norte.

Los resultados de la investigación, publicada en la revista Historical Biology, muestran las diferencias que existen entre los ejemplares portugueses y las formas norteamericanas de Ceratosaurus, como por ejemplo la fusión de los huesos de la tibia y el tobillo.

Ceratosaurus fue un carnívoro bípedo, bastante primitivo en la historia evolutiva de los dinosaurios terópodos. Los ejemplares adultos podían alcanzar hasta seis metros de longitud y pesar cerca de media tonelada. “Su abundancia en el registro norteamericano ha hecho que este terópodo, provisto de un pequeño cuerno en la parte anterior del rostro, sea uno de los dinosaurios más populares para el público”, destaca Ortega.

El salto evolutivo en el Atlántico Norte

El trabajo da pistas sobre cómo hace más de 150 millones de años la apertura del Atlántico Norte marcó la evolución de esa especie, al diferenciarse y extenderse un mismo ejemplar jurásico en lo que hoy son dos continentes con miles de kilómetros de distancia.

“El estudio proporciona nuevas pruebas de que la distribución de Ceratosaurus incluía no solo el territorio que corresponde actualmente a América del Norte sino también Europa”, subraya Elisabete Malafaia, miembro de la Sociedad de Historia Natural de Torres Vedras y autora principal del trabajo.

En este sentido, en las últimas décadas se viene reconociendo una gran semejanza entre determinados grupos de dinosaurios del Jurásico Superior del oeste norteamericano –la Formación Morrison que se extiende por Colorado y Utah– y los dinosaurios de la península ibérica, en especial, los de la cuenca lusitánica portuguesa.

En la investigación, además del Grupo de Biología de Evolutiva de la UNED, han participado científicos de instituciones portuguesas como el Laboratorio de Paleontología de la Sociedad de Historia Natural de Torres Vedras, la facultad de Ciencias de la Universidad de Lisboa y el Museo Nacional de Historia Natural y de Ciencia.

divulgaUNED | SINC

jueves, 8 de mayo de 2014

Pinocho rex, una nueva especie de tiranosaurio de hocico largo

Pinocho rex, una nueva especie de tiranosaurio de hocico largo
Científicos de la Academia China de Ciencias Geológicas y de la Universidad de Edimburgo describen en la revista Nature Communications una nueva especie de dinosaurio que han apodado ‘Pinocho rex’ (Qianzhousaurus sinensis), por ser de la misma familia que Tyrannosaurus rex pero con un hocico alargado.

Un equipo internacional de investigadores ha hallado en el sur de China una nueva especie de tiranosaurio, Qianzhousaurus sinensis. Los expertos aseguran que este animal era un carnívoro temible que vivió en Asia durante el Cretáceo tardío, hace más de 66 millones de años.

Por sus características diferentes a la mayoría de los tiranosaurios lo han apodado ‘Pinocho rex’. Tenía un cráneo alargado, y unas mandíbulas más poderosas y con dientes más gruesos que sus primos los Tyrannosaurus rex.

"Su hocico era mucho más largo y tenía una hilera de cuernos en su nariz. Podría parecer de aspecto un poco cómico, pero era tan letal como cualquier otro tiranosaurio y tal vez incluso un poco más rápido y sigiloso”, explica Steve Brusatte, de la Escuela de Geociencias de la Universidad de Edimburgo.

Los restos de este depredador fueron desenterrados en el sur de China. Hasta ahora solo se habían encontrado dos tiranosaurios fosilizados con cabezas alargadas, ambos crías, por lo que no estaba claro si se trataba de una nueva clase de dinosaurio o si estaban en una etapa temprana de crecimiento y posteriormente podrían haber desarrollado cráneos más robustos.

Este espécimen se halló en gran parte intacto y muy bien conservado, lo que confirma la existencia de especies de tiranosaurios con hocicos largos.

Según Junchang Lü, del Instituto de Geología de la Academia China de Ciencias Geológicas: "El nuevo descubrimiento es muy importante, junto con Alioramus de Mongolia, ya que demuestra que los tiranosáuridos de hocico largo se distribuyeron ampliamente en Asia. A pesar de que estamos empezando a conocerlos, estos tiranosaurios eran, al parecer, uno de los principales grupos de dinosaurios depredadores en Asia".

Los expertos apuntan que Qianzhousaurus sinensis vivió junto al resto de tiranosaurios, pero no habrían coexistido en competencia directa con ellos, ya que eran más grandes y probablemente cazaban presas diferentes.

Tras el hallazgo, los investigadores han creado una nueva rama de la familia tiranosaurio para los especímenes con hocicos largos, y esperan que en un futuro se añadan nuevos dinosaurios al grupo de las excavaciones que continúan en Asia.

SINC

Planck registra la huella magnética de nuestra Galaxia

Planck registra la huella magnética de nuestra Galaxia
El observatorio espacial Planck de la ESA nos desvela la estructura del campo magnético de nuestra Galaxia. Esta nueva imagen fue confeccionada a partir de las primeras observaciones a cielo completo de la luz polarizada emitida por el polvo interestelar de la Vía Láctea.

La luz es una forma de energía muy familiar, pero alguna de sus propiedades permanecen ocultas para el ojo humano. Una de ellas – la polarización – almacena una gran cantidad de información sobre lo que ocurrió a lo largo de la trayectoria de un rayo de luz, y es de gran utilidad para los astrónomos.

La radiación electromagnética se puede describir como la superposición de un campo eléctrico y de un campo magnético que oscilan en direcciones perpendiculares entre sí y a su dirección de propagación.

Normalmente estos dos campos pueden oscilar en cualquier orientación, pero si lo hacen en una dirección preferente, se dice que la luz está ‘polarizada’. Este fenómeno se produce, por ejemplo, cuando la luz se refleja en un espejo o en la superficie del mar. Utilizando filtros especiales se puede aislar la luz polarizada, que es el principio que utilizan algunas gafas de sol para eliminar los reflejos.

En el espacio, la luz emitida por las estrellas, el gas y el polvo interestelar también puede estar polarizada. Al estudiar esta propiedad de su radiación, los astrónomos pueden deducir los procesos físicos que provocaron la polarización.

El estudio de la polarización es muy útil, entre otras cosas, para revelar la existencia y las propiedades de los campos magnéticos que el rayo de luz ha atravesado a lo largo de su trayectoria.

Este nuevo mapa fue confeccionado a partir de los datos recogidos por unos detectores del observatorio espacial Planck que actúan de forma similar a las gafas de sol polarizadas. Los remolinos, bucles y arcos de esta nueva imagen bosquejan la estructura del campo magnético de nuestra propia galaxia, la Vía Láctea.

Además de cientos de miles de millones de estrellas, nuestra Galaxia también contiene una mezcla de polvo y gas, la materia prima a partir de la que se formarán nuevas estrellas. Aunque estos diminutos granos de polvo estén muy fríos, emiten radiación con una longitud de onda muy larga – en las bandas del infrarrojo y de las microondas. Si los granos no son simétricos, una gran proporción de su radiación oscila en un plano paralelo al eje mayor de la partícula, lo que provoca que esté polarizada.

Si todos los granos de polvo de una nube estuviesen orientados de forma aleatoria, no se observaría una polarización neta. Sin embargo, los granos de polvo cósmico casi siempre están girando a gran velocidad, del orden de las decenas de miles de millones de veces por segundo, como resultado de las colisiones con fotones y con átomos que se mueven a gran velocidad.

Por otra parte, como las nubes interestelares de la Vía Láctea están atravesadas por campos magnéticos, los granos de polvo en rotación tienden a alinearse con las líneas de campo, orientando su eje mayor perpendicular a la dirección del campo magnético. Como resultado, la radiación emitida por estas nubes presenta una polarización neta que puede ser medida y estudiada.

Utilizando esta técnica, los astrónomos utilizan la polarización de la luz emitida por los granos de polvo para deducir la estructura del campo magnético de nuestra Galaxia, delineando la orientación de la proyección de las líneas de campo sobre el plano del firmamento.

En esta nueva imagen de Planck, las regiones más oscuras se corresponden con las emisiones más polarizadas, y las estrías indican la dirección del campo magnético, proyectada sobre el plano del firmamento. Como el campo magnético de la Vía Láctea tiene una estructura tridimensional, es muy difícil determinar su orientación si las líneas de campo están muy desordenadas a lo largo de nuestra línea de visión, como si tratásemos de detectar algún tipo de alineación al mirar a través de un ovillo de lana.

No obstante, los datos de Planck demuestran que existe una organización a gran escala en algunas regiones del campo magnético de nuestra Galaxia.

La banda oscura que cruza en horizontal el centro de la imagen se corresponde con el Plano Galáctico. En ella, la polarización presenta un patrón regular a grandes escalas angulares, lo que indica que las líneas de campo son mayoritariamente paralelas al plano principal de la Vía Láctea.

Estos datos también muestran cómo varía la dirección de polarización en el interior de las nubes de polvo y gas más cercanas, tal y como se puede ver en las marañas presentes por encima y por debajo del plano principal, en las que el campo magnético local está especialmente desordenado.

Los datos de la polarización galáctica obtenidos por Planck son analizados en detalle en una serie de cuatro artículos enviados a la revistaAstronomy & Astrophysics. Sin embargo, el estudio del campo magnético de la Vía Láctea no es el único motivo por el que los científicos están interesados en estos resultados. Oculta tras la radiación de nuestra propia Galaxia se encuentra la señal primordial de la Radiación Cósmica de Fondo (CMB), la luz más antigua del Universo.

La misión Planck ya ha publicado un mapa del brillo de la radiación CMB con un nivel de detalle sin precedentes, y los científicos están escudriñando los datos para aislar la polarización de esta señal. Éste es uno de los principales objetivos científicos de Planck, ya que podría aportar pruebas que confirmen la generación de ondas gravitacionales inmediatamente después de la formación del Universo.

En marzo de 2014 los científicos de la colaboración BICEP2 anunciaron la primera detección de este tipo de señal a partir de los datos recogidos por un telescopio en tierra, tras observar una región del firmamento en una única frecuencia en la banda de las microondas. Esta afirmación se basa en la asunción de que las emisiones polarizadas en primer plano son prácticamente despreciables en esta región.

A lo largo de este año, los científicos de la colaboración Planck publicarán los datos obtenidos por el observatorio espacial europeo tras registrar la luz polarizada en siete frecuencias diferentes a lo largo de todo el firmamento. Estos datos en distintas frecuencias ayudarán a los astrónomos a separar cualquier posible contaminación de la débil señal polarizada de la Radiación Cósmica de Fondo.

Estos resultados permitirán investigar con mucho más detalle los primeros momentos del cosmos, desde la fase de expansión acelerada, cuando el Universo tenía menos de un segundo de existencia, hasta el periodo en el que se formaron las primeras estrellas, varios cientos de millones de años más tarde.

ESA

viernes, 2 de mayo de 2014

El nacimiento de un agujero negro deja su firma en una explosión estelar

El nacimiento de un agujero negro deja su firma en una explosión estelar
Un equipo internacional de investigadores, con algunos españoles, ha detectado por primera vez la huella del nacimiento de un agujero negro en una explosión estelar, la de rayos gamma GRB121024A. Aunque se conocía que estos fenómenos eran precursores del nacimiento de los agujeros negros, hasta ahora no se había observado polarización circular en su luz, la firma inequívoca de su formación.

Hace unos once mil millones de años, una estrella con más de cien veces la masa del Sol agotó su combustible y se derrumbó sobre sí misma, proceso que produjo una explosión de rayos gamma (GRB, por sus siglas en inglés), uno de los eventos más energéticos del universo. Su estudio, publicado ahora en la revista Nature, ha permitido detectar por primera vez la firma inequívoca de la formación de un agujero negro.

Esa firma consiste en una vibración específica de la luz conocida como polarización circular. "La luz que recibimos del universo es el resultado de la superposición desordenada de muchas ondas electromagnéticas que vibran aleatoriamente, es decir, luz no polarizada –ilustra Javier Gorosabel, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC/UPV-EHU) que participa en el hallazgo–. Bajo algunas circunstancias, la luz de algunos astros vibra preferentemente en un plano, dando lugar a luz polarizada linealmente. Pero en este GRB hemos hallado luz que viaja como si fuera un sacacorchos, es decir, polarizada circularmente".

Y este tipo de polarización remite a los instantes posteriores al nacimiento de un agujero negro. Las estrellas que producen GRB, además de muy masivas, giran muy rápidamente sobre sí mismas, lo que genera peculiaridades: su implosión no se produce de forma radial, como un globo al deshincharse, sino que sigue una forma espiral similar a la que dibuja el agua en un sumidero. Además, su luz se emite a través de dos chorros alineados con el eje de rotación que presentaba la estrella moribunda.

Pero, más importante aún, estas estrellas presentan un campo magnético muy intenso. Y, durante el derrumbe, el campo magnético también se arremolina en torno al eje de rotación de la estrella, reforzándose. "Podríamos decir que durante el desplome de la estrella se produce un potente géiser magnético que surge del motor central, o el entorno del agujero negro, y cuyos efectos se sienten a distancias de billones de kilómetros", apunta el investigador.

Todo este complejo escenario predice una ineludible firma: producto de este géiser magnético, la luz óptica emitida a través de los chorros debe estar polarizada circularmente. Y esto es, precisamente, lo que han hallado los autores en GRB121014A gracias a la precisión del Very Large Telescope (ESO) en Chile. "Posiblemente lo que hemos detectado son los efectos que el nacimiento de un agujero negro provoca en su entorno", resume Gorosabel.

GRB, de incógnita a fuente de información

Las explosiones de rayos gamma son destellos breves e intensos de radiación gamma que se producen al azar en cualquier lugar del cielo y que se relacionan con procesos ligados a sucesos catastróficos en las estrellas. Se clasifican, según su duración, en GRB cortos (pocos milisegundos) y largos (hasta media hora), generados por la fusión de dos objetos compactos y el colapso de una estrella muy masiva respectivamente.

La atmósfera de la Tierra es opaca a los rayos gamma, de modo que los GRB solo se pueden captar gracias a detectores embarcados en aparatos espaciales, como el satélite Swift de la NASA, responsable de la detección de GRB121014A.

Descubiertos en 1967, los GRB constituyeron un enigma hasta que 1997 se confirmó que procedían de galaxias muy distantes, lo que implicaba que eran los objetos más energéticos del universo. Apenas dos décadas después, los GRB largos –los más conocidos– se están revelando como una potente herramienta para conocer las circunstancias en las que se forman los agujeros negros y sus efectos sobre el entorno.

IAA (CSIC) | SINC

jueves, 1 de mayo de 2014

Se mide por primera vez cuánto dura un día en un exoplaneta

Se mide por primera vez cuánto dura un día en un exoplaneta
Observaciones llevadas a cabo con el telescopio VLT (Very Large Telescope) de ESO, han determinado, por primera vez, la velocidad de rotación de un exoplaneta. Se ha descubierto que la duración de un día en Beta Pictoris b es de tan solo ocho horas. Esta velocidad es mayor a la de cualquier planeta del Sistema Solar — su ecuador se mueve a casi 100.000 kilómetros por hora. Así, este nuevo resultado extiende a los exoplanetas la relación entre masa y rotación existente en el Sistema Solar. En el futuro, técnicas similares utilizando el E-ELT (European Extremely Large Telescope) permitirán a los astrónomos hacer mapas detallados de los exoplanetas.

El exoplaneta “Beta Pictoris b” orbita a la estrella Beta Pictoris, visible a simple vista, que se encuentra a unos 63 años luz de la Tierra, en la constelación austral de Pictor (el caballete del pintor). Este planeta fue descubierto hace casi seis años y fue uno de los primeros exoplanetas de los que se obtuvo imagen directa. Orbita a su estrella anfitriona a una distancia de solo ocho veces la distancia Tierra-Sol — siendo, además, el exoplaneta más cercano a su estrella captado en imágenes directas.

Utilizando el instrumento CRIRES, instalado en el VLT, un equipo de astrónomos holandeses de la Universidad de Leiden y del Instituto para la Investigación Espacial de los Países Bajos (SRON) ha descubierto que la velocidad de rotación ecuatorial del exoplaneta Beta Pictoris b es casi de 100.000 kilómetros por hora. Haciendo una comparación, el ecuador de Júpiter tiene una velocidad de unos 47.000 km por hora, mientras que la Tierra viaja a tan solo 1.700 km por hora. Beta Pictoris b es más de 16 veces más grande y 3.000 veces más masiva que la Tierra, pero un día del planeta solo dura 8 horas.

“No se sabe por qué algunos planetas giran rápido y otros más despacio”, afirma el coautor Remco de Kok, “pero esta primera medida de la rotación de un exoplaneta muestra que la tendencia vista en el Sistema Solar, en la que los planetas más masivos giran más deprisa, puede aplicarse a los exoplanetas. Debe tratarse de una consecuencia universal derivada de la forma en que se crean los planetas”.

Beta Pictoris b es un planeta muy joven, de tan solo unos 20 millones de años (comparados con los 4.500 millones de la Tierra). Con el paso del tiempo, se espera que el exoplaneta se enfríe y encoja, con lo cual girará aún más rápido. Por otro lado, hay otros procesos que pueden influir en el cambio de la velocidad de giro del planeta. Por ejemplo, el espín de la Tierra se está ralentizando con el paso del tiempo debido a las interacciones de marea con nuestra Luna.

Los astrónomos hicieron uso de una técnica muy precisa llamada espectroscopía de alta dispersión para dividir la luz en los colores que la forman — las diferentes longitudes de onda en el espectro. El principio del efecto Doppler (o desplazamiento Doppler) les permitió usar el cambio en la longitud de onda para detectar que diferentes partes del planeta se movían a velocidades diferentes y en direcciones opuestas en relación al observador. Eliminando cuidadosamente los efectos de la estrella anfitriona, mucho más brillante, fueron capaces de extraer la señal de la rotación del planeta.

"Hemos medido las longitudes de onda de la radiación emitida por el planeta con una precisión de una parte entre cien mil, lo que hace las mediciones sensibles a los efectos Doppler que pueden revelar la velocidad de los objetos emisores", confirma el autor principal Ignas Snellen. "Utilizando esta técnica nos encontramos con que diferentes partes de la superficie del planeta se acercan o se alejan de nosotros a diferentes velocidades, lo cual sólo puede significar que el planeta gira alrededor de su eje".

Esta técnica está estrechamente relacionada con la técnica para hacer imágenes Doppler, que ha sido utilizada durante varias décadas para realizar mapas de las superficies de las estrellas y, recientemente, de la enana marrón Luhman 16B. La rápida rotación de Beta Pictoris b significa que, en el futuro, será posible hacer un mapa global del planeta, mostrando posibles patrones de nubes y grandes tormentas.

"Esta técnica puede utilizarse en una muestra mucho más grande de exoplanetas con la excelente resolución y sensibilidad del E-ELT y un espectrógrafo de imagen de alta dispersión. Con el futuro instrumento METIS (Mid-infrared E-ELT Imager and Spectrograph) seremos capaces de hacer mapas globales de exoplanetas y de caracterizar planetas mucho más pequeños que Beta Pictoris b con esta técnica", afirma el investigador principal de METIS y coautor del nuevo artículo, Bernhard Brandl.

Loading player...


ESO

Seguidores

Noticias Recientes


CC 2.5Noticias de Ciencia. Template por Dicas Blogger.

Inicio